An essential task in predictive maintenance is the prediction of the Remaining Useful Life (RUL) through the analysis of multivariate time series. Using the sliding window method, Convolutional Neural Network (CNN) and conventional Recurrent Neural Network (RNN) approaches have produced impressive results on this matter, due to their ability to learn optimized features. However, sequence information is only partially modeled by CNN approaches. Due to the flatten mechanism in conventional RNNs, like Long Short Term Memories (LSTM), the temporal information within the window is not fully preserved. To exploit the multi-level temporal information, many approaches are proposed which combine CNN and RNN models. In this work, we propose a new LSTM variant called embedded convolutional LSTM (ECLSTM). In ECLSTM a group of different 1D convolutions is embedded into the LSTM structure. Through this, the temporal information is preserved between and within windows. Since the hyper-parameters of models require careful tuning, we also propose an automated prediction framework based on the Bayesian optimization with hyperband optimizer, which allows for efficient optimization of the network architecture. Finally, we show the superiority of our proposed ECLSTM approach over the state-of-the-art approaches on several widely used benchmark data sets for RUL Estimation.
Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.